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1. Introduction

In geodesy and geophysics we frequently meet with the
situation that a model defined by a set of, say, N parameters
is to be determined from a smaller number n < N of observations.

As an example, the internal structure of the earth may be
defined by a set of N parameters describing the density, tne
rigidity, and the compressibility of the earth as a function of
depth. The n observations comprise velocities of seismic sur-
face waves, together with the mass and the polar moment of inertia
of the earth. If the model for the earth's internal structure is
to be realistic, then N will be large and n < N

We thus have n < N equations for N wunknowns, which is
obvicusly an underdetermined problem admitting an infinite number
of possible solutions. Using standard mathematical terminology
vLanczos, 1964), we have an improperly posed problem. (A problem
is properly posed if it has a unique solution that depends con-
tinuously on the data.)

Originally, the equations expressing the data X, as
functions of the model parameters S, will, in general, be non-
linear:

ny s fi<51952’~--’sn) s 1= 1,2,...,n . e

By a suitable application of Taylor's theorem it is usually
possible to approximate these equations by linear ones:

N
RN 2R T el (1-2)

or in matrix notation:

%= As . ' (1-3)




The formal solution of this system of linear equations

may be written as

s = AT'x

(1-4)

If A were a regular square matrix, then A'l would be the or-
dinary inverse matrix of A . In our underdetermined case, how-
ever, ﬁ_l must be understood in the sense of generalized matrix
inverses (cf. Bjerhammar, 1973; Rao and Mitra, 1971).

At any rate, the solution of (1-1) or (1-3) may be con-
sidered as an inversion of these equations with respect to the

parameters S, » which accounts for the name, geophysical inverse
problems.

Another typical example of an "improperly posed" inverse
proolem is the determination of subsurface mass distributions
which produce a given anomalous gravity field at the earth's sur-
face. This problem is sometimes called an inverse problem of po-
tential theory (Lavrentiev, 1967; Burkhard and Jackson, 1976).

The determination of the earth's external gravitational
field from geodetic, gravimetric and satellite data may also be
considered as an inverse problem that is mathematically quite
similar to the determination of the internal structure of the
earth from seismic and other data.

This geodetic inverse problem is likewise underdetermined.
The external gravitational field requires for a complete de-
scription an infinite number of parameters, for instance, the set
of all coefficients in the expansion of the external gravitational
potential in spherical harmonics. This infinite number, N = ~ , ‘
of parameters is to be determined from a finite number n of |
observations.

Even in the seismic inverse problem it is, at least theo-
retically, appropriate to take N = « if we wish to admit rea-
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sonably general functions for density, rigidity, and compressi-
bility because it cannot be assumed a priori that such functions
depend on a finite number of parameters only.

Thus, in general, the space of parameters will be infinite-
dimensional rather than N-dimensional. In other words, the proper
general setting for (linear) geodetic and geophysical invers:
problems will be infinite-dimensional Hilbert space. This was
pointed out by Krarup (1969) for the geodetic case and by Backus
(1970) for geophysical inverse problems.

The gecdetic inverse problem, the determination of the
external gravitational field from data of different kind, is usu-
ally solved by least-squares collocation. This technique has many

features in common with other geophysical inversion methods. It
may. therefore, be of interest to compare these techniques and toc
exhibit some cross-connections.

We shall also discuss ieast-squares collocation from the
point of view of analytically representing the external aravi-
tational field by a linear combination of suitable simpler har-
monic functions.

The subject of the present report is purely conceptual,
aiming at a better understending of least-squares collocation by
considering it in is relation to other methods, no new compu-
tational formulas will be derived. Still, this paper might be
useful as a contribution to the present discussion on the con-
ceptual foundations of least-squares collocation.

2. Systems of Linear Equations

Let us assume that the geophysical or geodetic inversion
probiem has already been linearized, so that it reduces to the
solution of a system of linear equations of form (1-3),




E

E
>
l

Ba =2 ; il

s being the vector of N parameters to be determined, X de~

noting the vector of n observations, and B being a given
nxN matrix of coefficients.

Assuming n < N , we have an underdetermined problem. The
number N of parameters may be finite or infinite. For N = «
we must presuppose that the occurring sums from 1 to N , which
are now infinite series,converge; otherwise the formal opera-
tions are the same as for a finite W

Equations of type (2-1) may be formulated for seismic
inversion problems (Knopoff and Jackson, 1973), for gravity inter-
pretation problems (Burkhard and Jackson, 1976; Kaula et al., 1975),
as well as for the geodetic problem of determining spherical har-
monics of the geopotential from satellite obsarvations by least-
squares collocation (Schwarz, 1974, 1975).

A general solution of the underdetermined system (2-1)
(assumed full rank) is

s = c8%¢mes™y 'x {2-2)

where C isa N x N matrix such that §E§T is a reguiar n xn
matrix. Otherwise C is arbitraty: different solutions are ob-
tained by different choices of C , and this gives an infinite
set of possible solution vectors s

It is immediately verified that (2-2) satisfies the given
system (2-1). Less obvious but also well known from the theory of
generalized inverses (cf. Bjerhammar, 1973, p.116) is the fact *

that the solution (2-2) satisfies the minimum condition

s"C's = minimum , (2-3)

3 s 5 -1 3 . .
provided the inverse matrix C exists in an appropriate sense

i S d b s it i 6 — et il i i i i\ S e,

-




(for N = « this implies convergence of any occurring infinite
sums) .

Usually the measurements X, will be affected by unknown
observational errors, denoted by n. ; the notation follows the

terminology of time series: "s stands for signal, and "n"

stands for "noise". (There is hardiy any danger of confusing n ,

the noise vector, with n , the number of observations.) Then
(2-1) is to be replaced by

Bs + n = § . (2-4)

An appropriate minimum condition, instead of (2-3), is now

sTcts + n™07'n = minimum, (:

no
[

ol

S

where C and D are symmetrical matrices that can be interpreted
statistically as covariance matrices: C s the covariance matrix

of the signal s , and D is the covariance matrix of the noise
n , that is, of the observational errors.

The solution of (2-4) under the minimum condition is found
to be

s = cBT(BCBT + D) 'x

(2-6)

This solution has been used for geophysical inverse problens

(Wiggins, 1972, pp.260-1; Burkhard and Jackson, 1976, p.1514).
It is also the solution obtained by least-squares collo-

cation (Schwarz, 1974). This is clear from the condition (2-5)

and may also be derived directly as follows.
The basic collocation model is

X=AX+#s'+n




‘signal  part™ of

(Moritz, 1972, p.7), where s' is the randou
the observations x and X denotes non-random (systematic)

parameters. If X 0 , the model (2-7) reduces to

x = stg'n . (2-8)
If the vector s' is expressed as a linear combination Bs of
"basic signals" (in the geodetic case, e.g., spherical harmonic

coefficients), then (2-8) becomes
x=8s+n, (2-9)

which, in fact, is the model (2-4), the "parameters" s now
being treated as random variables.

The collocation solution follows from eq. (2-36) of
(Moritz, 1972, p.15) for X = @

g SRRy (2-10)

—S X—XX—

which is essentially nothing but the fundamental Wiener-Kolmogorov
prediction formula (cf. Liebelt, 1967; he calls it Gauss-Markov
theorem). The matrix C., 1s the covariance matrix of the vector
X , and gsx is the cross-covariance matrix between the vectors
Sﬁ and x

We assume the vectors s and n to be uncorrelated.
Then the application of covariance propagation (Moritz, 1972, p.97)

gives readily.

(2-11)

n
w
(2
w
e
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C being the covariance matrix of the vector s . Thus, in our
case, (2-10) in fact becomes (2-6).
Let us now turn to the accuracy of the estimated signal

s . This accuracy is usually defined by the error covariance

matrix ESS consisting of error variances (squares of standard
errors) as diagonal terms and error covariances as off-diagonal

P T T R TR Mgy yopi

terms.
If we abbreviate (2-6) as

s L > (2-13) 1

then E £ s given by eq. (3-20) of (Moritz, 1972, p.29):

R 1 T T T e (2-14)
=55 =SS e S X - XX H
i
With € _ = L and (2-11) and (2-12}, this becomes i
5
= € ~ LBC - CBL"+ L{BCB +dJL"
E.o = C - LBC - CB L+ L(BC
This is readily given the form §
é
Eee = E; *E; (2-15)
_— =1 =
' 2
where E
L]
E, = (LB - I)Cc(L -1)7 , (2-16)

frm

1]

=
=

=]
-

-~
(%)

1]
i
~

:




I denoting the unit matrix. This form provides an elegant de-

composition of the error covariance matrix E__ which has the
following interpretation (Burkhard and Jackson, 1976, p.1514).
Let us write (2-13) in the form

()

= _Li 3 (2'18)

-

where the notation § 1is to indicate that we are dealing witn
the estimated value of the signal. We now substitute into this
formula eq. (2-4),

Xx =Bs +n, (2-19)

in which s and n denote the "true” values. The result is

()
1

LBs + Ln , (2-20)

so that the "true error" of the signal, defined as estimated
value S minus true value s , is given by

= 135 # Lh (2-21)

= (LB - [)s . {2-22)

denotes the resclving error, due to the deviation of the product

LB from the unit matrix I : if the system (2-1) could be
exactly solved--B being a regular square matrix--then e, would
be zero. The second term,

e, = Ln , (2-23)




expresses simply the effect of data errors propagating into the

solution. Clearly, Ex is the covariance matrix of e, and E

the covariance matrix of e  ; E, and E_ siuaply add in (2-15)

L i <

because e, and e, are uncorreiated, being linear functions
of the uncorreiated vectors s and n , respectively.

We have at length considered underdetermined systems, be-
cause they are typical for geophysical inversion problems and
for the determination of the gravitational field. As regards
(full-rank) overdetermined systems, the model (2-4) can still be
used with B as a "standing" instead of a "lying" rectangular
matrix, the vector s having now less corponents than the vector
X, N<n . The condition (2-5) gives again a solution which is
formally identical to (2-6).

The new feature, peculiar to the overdetermined case
n >N, is that now the following well-known transformation

(cf. Liebelt, 1967, p.30) can be applied:

sT(acaT«n) "t = (8% tgec™Yy B! (2-24)

B

Thus, for the overdetermined case, (2-6) is equivalent to {

s = (8T7BeCTH) B0 X (2-25)

This form has the advantage of permitting an easy transition to 1
least-squares adjustment by parameters: the condition for this ﬁ
case,

ng—lp = minimum, (2-26)
arises from (2-5) by letting 'Q'l » 0 3 in the same way, (2-25)
becomes
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s = (B"7'B) '8 X, (2-27)
which is the classical least-squares solution of (2-4) if it is
an overdetermined system.

It may be mentioned that the two elementary cases of
classical least-squares adjustment, namely adjustment by para-
meters and adjustment by conditions, come out as limiting cases
of the general model (2-6). They are, so to speak, at extreme
ends of the scale: for overdetermined systems, (2-6) gives (2-27)
for E'l -~ 0 , as we have just seen. For underdetermined systems,
(2-6) becomes (2-2) on letting D -~ 0 . However, (2-6) is for-
mally identical to the result of least-squares adjustment by
conditions, on interpreting s now as measuring errors; cf. eq.
(12.1:11) of(Bjerhammar, 1973, p.166) with our eq. (2-2) for
€ =

Complete Sets of Solutijons.- An interesting question is

the problem of determining the set of all "reasonable" gravi-
tational fields that are compatible with the set of all avail-
able geodetic data. Each measurement (such as terrestrial gravity
or satellite data) gives an equation, which, on linearization,
provides one of the linear equations of a system (2-1); we assume
n independent observations. The unknowns s are to be the set
of all zonal and tesseral harmonics in the anomalous gravi-
tational field; thus N = «

For simplicity we assume errorliess data (n = 0) ; thus
the equations (2-1) have to be satisfied exactly. As we have
mentioned, such a complete set of solutions is obtained by let-
ting the matrix C vary in the solution (2-2). However, this
representation is computationally inconvenient since each tinme
a large matrix EEET would have to be inverted anew.

Practically more suitable is the representation, well-
known from the theory of singular matrix inverses (cf. Bjerhammar.
1973, p.378),

- IRR—
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Bx o+ (1 B Blu . (7 28)
where

8™ = ¢ B ¢BC 82
B =€ B(BC B

) {2~28)
is a fixed generalized inverse of B , to be computed once for all
with an assumed fixed matrix C_ . The vector u s arbitrary;

the desired set of solutions is obtained by letting u run througn
the set of ail possible vectors of infinitely many components for
which the infinite sums converge.

Having thus obtained the complete set of soiutions (z-28),
one may select special solutions by imposing suitable conditions.
The geodetically most meaningful condition is probably optimal
accuracy of the result, expressed in terms of minimum error vari-
ances. This condition is known to be equivalent, for errorless data,
to the condition (2-3), C being the signal covariance matrix
(cf. Moritz, 1972, pp.38 and 122). Under this condition the solution
is given by (2-2). For this case we may put

- cBT(BCBT)™! - BTix (2-30)

E:
in fact,on substituting this expression, (2-28) becomes (2-2).

A geophysically interesting side condition is that the
solution s belong to a convex set described by inequalities such
as

$, 2 U 25, # B r0l oy Btes

Probiems of minimizing the error variance (or other functions)
subject to such side conditions are dealt with in optimization

IS 7 -
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theory (linear and nonlinear programming).

In the problem of determining mass structures from gravity
data, the requirement that the obtained density be nonnegative
would lead to such side conditions.

In the geodetic inversion problem, the determination of
the external gravitational field, such conditions have never been
used and do not seem, in general, to have practical importance.
However, the condition that the total gravitational field shouid
be generated by masses that are everywhere nonnegative, is a
physical requirement to be met. In "reasonable" solutions it
seems to be more or less automatically satisfied, but a closer
look on the convexity problem in geodetical applications may not
be without theoretical interest, as has been pointed out to the
author recently by Prof. P.C. Sabatier and Prof. D.D. Jackson.

We finally mention the beautiful geometrical treatment of
underdetermined and overdetermined systems of linear equations in
(Lanczos, 1964, chapter 3).

3. Functional Representation
of the Gravitational Field

Let us now turn to an apparently quite different problem,
the representation of the earth's external gravitational field by
appropriate analytical functions.

Let the anomalous potential T be approximated by a linear
combination f of suitable base functions Dysbysdyses

T(P) = £(P) = ] bo,(P) , (3-1)

P denoting the space point at which these functions are being
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considered, and bk denoting suitable coefficients.
Since T is harmonic outside the earth's surface, all base

functions must be harmonic functions, too. They may, for

¢
instance, bekspherical harmonics or the potentials of point masses
suitably distributed below the earth's surface.

How are the coefficients bk to be determined? Assume,
for the sake of simplicity and definiteness, that we are given
errorless values of T at n space points Pi « Then it is
reasonable to use the approximation of T by a linear combination
(3=1) af n base functions and to postulate that f exactly

reproduces T at the n given points. Putting

TRR ) = £(R ) = 1, (3-2)

we thus have the conditions

Il
VLS S (3-3)
ke 1 kK k> 1 1
which are n Tlinear equations for the n unknowns bk , Which
can be solved provided they are linearly independent.
With
PRl o) ™ Ao (3-4)

or in matrix notation, ,

Ab = £, (3-6)
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with the solution

b=A"

£ (3-7)
Thus the determination of the coefficients bk always involves
the solution of a n x n system of linear equations, or the in-
version of a n x n matrix.

An exception would be the case that the matrix A re-
duces to the unit matrix, that is

the base functions for this case being denoted by x(P) instead
of ¢(P) . This means that the functﬁons X, are zero at all data
points except one, at which they assume the value 1 . Such
functions are called sample functions; they have the pleasant
property that, by (3-7), b = f , so that (3-1) reduces to

f(P) = 3 f ) S 3-9
(P) = 1 fx,(P) (3-9)

the coefficients being simply the given values of the function f
at the data points Pk

0f course, it cannot be expected in general that A in
fact reduces to the unit matrix, but even if this is not the case,

we can associate a set of sample functions Xy to the given base
functions O by putting
n (_1)

x il
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where A;;l) denote the elements of the matrix A"l inverse
to A, In fact, putting P = Pi in (3-10) we get

according to the definition of the inverse matrix, so that (3-8)
is satisfied. Furthermore, the substitution of (3-10) into (3-9)
gives

‘2‘ ‘;‘ (-1)
f(P) = A f.oo.(P)
j=1x=1 Ik K73

=j21bj¢j(P) (3-12)

by (3-7), so that the sample function development (3-9) is iden-
tical to the original representation (3-1).

In this way we can, indeed, associate to each system of
base functions PRI PR and to each configuration of points
Pl,Pz,...,P“ a system of sample functions XpoXgseesX - This
has advantages if the same point configuration is used with
different data sets; then only the fk change, but the sample
functions Xk(P) remain the same. As a matter of fact, also this
approach requires, according to (3-10), the inversion of the
nxn matrix A , but it need to be performed only once for a
given point configuration.

The type of sample functions best known in geodesy are
the functions of Giacaglia and Lundquist (1972) based on the
system of spherical harmonics for regular point configurations

on the sphere. For such point configurations 4




A

16

it presents computational advantages and is precisely equivalent
to a spherical-harmonic representation up to a certain degree.
Spherical harmonics and sample functions based on them
are suitable for a global representation. For local represen-
tations, potentials of buried masses or related functions (Dufour
and Kovalevsky, 1970) are more suitable; another possibility is
least-squares interpolation to be considered now. ?

The approximation of the potential T by a finite ! rear
combination of n base functions o, can, of course, reproduce
T only at n points, the data points. At other points, f will

deviate from T , that is, the error

e, = T(P) - f(P) (3-13)

will, in general, differ from zero. Of considerable importance is

obviously the question whether there exists a system of base
functions ¢k(P) for which, at every point P , the mean square
interpolation error m, s defined by

m2 = M(c2) (3-14)

attains a minimum, M denoting a suitably defined statistical
expectation value.

The answer to this question is yes (which is by no means
a matter of fact). This leads to least-squares interpolation due
to N. Wiener and A.N. Kolmogorov. A derivation is found in
(Heiskanen and Moritz, 1967, p.268). The result is

9y (P) = CIFPL) (3-15)

where C(P,Pk) is the covariance function of T between points
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P and P _ . Now this covariance function admits the representation

K
{itoritz, 1972, p.88)

C(P,Q) = | k (=) P (cosy) , (3-16)

where kh and R are constants, E and rQ are the spatia
radius vectors'off P' and @ . and P“ are Legendre's polynomials
as functions of the angle ¢ between e and rQ . This re-
presentation shows that C(P,Pk) s Considered as a function of P
is a harmonic function, analytic everywhere outside a certain
sphere. If tnhe radius of this sphere is chosen so that the sphere
lies compietely inside the earth, then the functions (3-15) will
be analytic everywhere outside and on the eartn's surface and can,
therefore, be used for representing the external gravitational
rotential.

[t is a general principle of least-squares estimation that
the result does not depend strongly on the a priori covariances
used. Therefore, if the actual covariance function (3-16) 1s a
function which is too complicated for practical use, one may,
without appreciable loss of accuracy, repiace the actual function
by a suitabie approximation of a simpler and more manageabie
analytical form (in practice, one will anyway fit a rather siupie
analytical expression to empirically obtained covariance data).
Therefore, aiso the functions (3-15) will be precisely defined
narmonic functions of a relatively simplie analytical formn.

By (3-4) and (3-15) we have now

3

|
{
‘
|
|
|
|




we get ftrom (3-/)

Bece el (3-19)

On introducing the vector

jD

(P) =:>C(P,Pl) » C(PsP,) »oves C(PLP )1, (3-20)

(3-1) thus takes the form

1

f(P) = €(P)C 'f , (3-21)

which is again the Wiener-Kolmogorov prediction formula (2-10).

It is clear that, on the basis of the functions (3-15)
for least-squares prediction, corresponding sample functions can
be defined by (3-10), each of which is zero at all data points
except one, at which it takes the value 1.

Least-squares prediction shares with all representation
methods of type (3-1) the disadvantage that a (usually large)
n x n matrix has to be inverted; it has, however, the advantage
that in this particular case the matrix to be inverted is symmetric,
being a covariance matrix (in the general case, the matrix A
is not symmetric).

Taken in the form just described, the application of least-
squares prediction in geodesy is rather limited, essentially to
the prediction of gravity anomalies. In fact, however, geodetic
data are of many different types: horizontal and vertical angles,
distances, gravity neasurements, deflections of the vertical,
satellite observations of many kinds, gravity gradients, etc. All
these geodetic data obviously share the properties that they
depend on the earth's gravitational field; therefore, on lineari-
zation, all of them may be expressed a linear functionals of the
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anomalous potential T . (Linear Functionals are by no means
restricted to linear functions but they include differential and
integral forimulas such as Stokes' integral.)

So more general and geodetically more important is
the problem to fit the representation (3-1) to the data, so that
the n given functionals of T are exactly reproduced. This is
the principle of collocation, which is frequently used in numer-
ical mathematics (cf. Collatz, 1966). If the base functions
:k(P) are again to be determined by the least-squares condition

of minimum interpolation error at all points P , then it is
natural to call the method least-squares collocation.

The solution has again the same formal structure as in
least-squares prediction. The result is

9, (P) = C(P,x,) , (3-22)

which is the covariance between T(P) and the measurement Xy
it is a function of the point P that is again harmonic and
analytic. The coefficients bk forming the vector b are deter-

mined by
bow £ e, (3-23)

where gxx is the autocovariance matrix of the observation
vector x = (xk)
Thus, with erroriess data, least-squares colliocation

determines the analytical form of the functions ¢ by the re-

quirement of optimal accuracy, whereas the data arg exactly repro-
duced.

In general, the geodetic data will be affected by random
measuring errors. Also in this case the condition my = minimum

can be applied and determines simultaneousiy
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(1) the best analytical expression for the functions
and
(2) the best values for the coefficients o

Even in this case, the formal expressions are the same
as before, again being given by (3-22) and (3-23). The measuring
errors have no influence on the choice of ¢, by (3 =22 s 0
that ? again represent pure gravitational covariance functions,
that is, analytical and harmonic functions; again the least-squares
principle serves only to singie out the most suitable analytical
expression for the base functions ¢, among the many possible
choices.

Where statistics enters directly is the determination of
the coefficients bk , which is done in such a way that the effect
of random data errors is minimized (therefore, the data are no
longer exactly reproduced); in statistical terminology, we have
3 "best linear estimate":an unbiased estimate of minimum vari-
ance.

Expressions analogous to (3-1) may be given for any other
quantity of the anomalous gravitational field (called "signal"),
such as geoidal heights, deflections of the vertical, gravity
anomalies, etc. The coefficients bk remain the same since they
depend only on the data x by (3-23). What changes are the base
functions by the new base functions are derived by simple
analytical operations such as differentiation, since a linear
operation performed on (3-1) acts on the base functions o, only.

Since these base functions are covariance functiohs, these
operations are special cases of covariance propagation which plays
a basic role in least-squares collocation: it has to carry the
precise mathematical structure of the gravitational field (cf.
Moritz, 1972, pp.94-99).

Inclusion of Systematic Parameters.- A last restriction

has to be removed before lTeast-squares collocation can be fuliy
applied to general geodetic problems. So far we have assumed that




b |
!
|
3!
3
4
1
i
{
1
5

we deal only with gquantities that have zero statistical expectation
such as the elements of the anomalous gravitational field, so

that systematic effects had to be removed beforehand; we shall

now free ourselves from this restriction.

We shall, therefore, consider the following model:
x=M+s+n, (3-24)

where the vector x comprises the measured quantities, s
representing the part due the anomalous gravitational field and
n denoting random measuring errors. The new component is AX ,
where the vector X comprises systematic, nonrandom parameters
and A is a given matrix of coefficients.

This model is general enough to encompass all conceivable
geodetic measurements. In fact, any geodetic measurement may be
split up, according to (3-24), into three parts:

1. A systematic part AX involving, on the one hand, the
ellipsoidal reference system and, on the other hand, other para-
meters and systematic errors (originally non-linear functions are
again thought to have been linearized by Taylor's theorem);

2. A random part s (of zero expectation) expressing the
effect of the anomalous gravity field; and

3. Random measuring errors n

As an example, consider a measurement of gravity, g
Here AX represents normal gravity vy , as well as systematic
errors such as gravimeter drift; s 1is the gravity anomaly 4g ;
and n stands for the measuring error. Other examples will be
found in (Moritz, 1972, pp.70-76).

The formulas for estimating X and s may be derived
from two different but equivaient minimum principles:

1. From a least-squares principle corresponding to (2-5);

2. From the condition of minimum variance (least standard




errors for estimated X and s ).
The result is:

%= (A et (3-25)
- _1 - -
s & C B (n - BN} . (3-26)

The first equation is analogous to classical least-squares adjust-
ment by parameters, except that the covariance matrix Exx in- {
cludes now covariances of the signal as well as those of the
measuring errors. The second equation is a fairly obvious gener- 1
alization of the Kolmogorov-Wiener formula (2-10) or (3-21) to
the case in which the expectation of x is AX rather than zero. 3

These formulas are an extension of the corresponding re-
sults for time series (Grenander and Rosenblatt, 1957, p.87).

The present method, least-squares collocation with para-
meters, may be considered as a combination of least squares adjust-
ment and least-squares prediction into a unified scheme, which
makes possible the use of all conceivable geodetic data--classical
angle and distance measurements, gravity measurements, sateilite
data of different kind, etc.--to obtain the geometric position of
points of the earth's surface as well as the gravitational field.

4. The Many Facets of Collocation

The Nature of Least-Squares Collocation.- In sec.2 we
have seen that, in important cases, least-squares collocation

reduces to a least-squares solution of an underdetermined systen
of linear equations. It might thus seem that least-squares collo-
cation is essentially nothing else than classical least-squares
methods known from adjustment computations.

3
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In trying to answer this question, we shall first consider
"simple" least-squares collocation, that is without estimation
of systematic parameters, so that we have A = 0 in (3-24) and
(3-26); this was also done in sec.2. Pnysically this means that

the observations x are alil quantities of the anomalous gravity
field.

In fact, every problem of simple least-squares collocation
can, in principle, be formuiated as a system of linear equations
of the form discussed in sec.2. Every quantity of the anomalous
gravity field, for instance a geoidal height, a gravity anomaly,
or a deflection of the vertical, can be expressed as an infinite
series of spherical harmonics, the coefficients of which constitute
the unknowns, the number N of which is obviously infinite. (Con-
vergence problems may be overcome by the use of Runge's theorem
(Krarup, 1969, p.54; Moritz, 1971, p.79).) Thus we always get a
system of equations of type (2-9), as outlined in sec.2.

If N were finite, then the solution (2-6) would, in fact,
correspond to classical least-squares since the condition (2-5) can
be written in the form

XTBX minimum (4-1)

with

%)
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"
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'n | TLeT (4-2)

and (2-4) takes the form of a condition equation for the vector v
What difference does the fact N = « make? The signal space
is now no longer finite-dimensional but it is infinitely-dimensional

Hilbert space. The elements of Hiibert spaces may be infinite

rosp———
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vectors, such as s , butalso functions of a certain kind. In
the gravitational case, we conveniently consider spaces of har-

monic functions, more precisely, of functions harmonic outside
a certain sphere.

There is a one-to-one correspondence between such func-
tions and infinite vectors s (of norm ETE < = ) by taking s
as the vector of coefficients of the spherical-harmonic expansion.
This makes it possible to avoid the use of infinite vectors (and
corresponding convergence problems) by working with functicn: ‘
and linear operations on them. In this way, formulas of Kolmogorov- |
Wiener type (3-21) are obtained, which operate with finite
n xn matrices.

Another way of linking collocation (including systematic
parameters) with adjustment, this time in finite-dimensional
space, was given in (Moritz, 1972, pp. 12-15). There, however, the
sigral values to be computed do not enter in the condition equa-
tions although they do enter into the minimum principle XTEX
Thus the condition equations do not provide a compliete formulation
as they do in adjustment computations, but must be supplemented
by additional considerations: the new signals are related to the
observations not by the condition equations, but through joint

covariances. (The importance of joint covariances is well known

from wide-sense stationary stochastic processes where they carry
the total statistical structure.)

So the relation of collocation and adjustment is very
elusive: the analogies are striking, but at the very moment when
we think that we have hit on an exact identity we must recognize
a difference in a fine but essential point. For a more detailed
discussion see also (Rummel, 1976).
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A much clioser relationship is between least-squares collo-
cation and the theory of prediction of stationary stochastic pro-
P cesses. In fact, the anomalous gravity potential may be considered
as a stochastic process on the sphere, or rather as a spatial
stochastic process that is harmonic outside a sphere.

The theory of stochastic processes provides a very con-
venient mathematical formalism and a statistical interpretation
and terminology (e.g., covariance functions). In fact, we have
seen at the end of the preceding section that the basic collocation
formulas (3-25) and (3-26) are precise analogues of the corre-
sponding results for prediction and parameter estimation of time
series.

Some kind of statistical interprediction is desirable to
get the geodetically important concept of accuracy (standard errors
of pradiction) into the picture. How seriously the statistical
interpretation is taken, is a matter of controversy and also of
personal taste. The present author (Moritz, 1972, secs.8 and 9)
favors an interpretation in terms of Norbert Wieners "“covariance
of individual functions" to take into account the fact that there
is only one earth and to avoid difficulties associated with the
stochastic process interpretation as pointed out by Lauritzen
(1973): it is impossible to find a stochastic process, harmonic
outside the sphere, that is both Gaussian and ergodic.

It is possible largely to play down the statistical aspects,

emphasizing Hilbert space geometry and considering the covariance
function as a kernel function in Hilbert space, as Krarup did in
his fundamental paper (1969). In fact, an interpolation formula
formally identical to the Kolmogorov-Wiener prediction formula is
obtained in the theory of kernel functions in Hilbert space
(Meschkowski, 1962, p.114) in a completely “deterministic" way,
without using any statistics.

It is well to emphasize the arnalytical nature of kernel
functions--which are precisely defined narmonic functions--to
avoid the wrong impression that least-squares collocation "messes
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up everything statistically" and to show that we have an under-
lying completely "clean" analytical model. The elementary rea-
soning in sec.3 of the present paper is intended to serve the
same purpose.

Why, then, use a special name, "least-squares collocation”
for the present geodetic method and not simply call it prediction?
The term prediction is usually understood to comprise interpo-
lation and extfapo]ation of time series and data of the samc
kind, for instance, gravity anomalies. The essence of the present
method, however, is the use of heterogeneous data, which are linear

functionals of the anomalous gravitational potential. As we have
seen in the preceding section, the fitting of a function to given
functionals is precisely the feature of collocation as understood
in numerical mathematics.

The name "least-squares collocation" thus seems to be guite
suitable to characterize the present method as a representatiagn

of the anomalous gravitational field by “clean" analytical func-
tions, which are selected and the coefficients of which are deter-
mined by a least-squares principle.
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